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, 

Examination w i l l  show t h a t  much of man-machine measurement depends on 
techniques var iously known as simulation, modeling o r  gaming. 
of contr ibut ing t o  the  cause of bet ter  measurement, i n  the following, the 
theo re t i ca l  foundations of simulation, models and games are outlined. With 
the  view t h a t  measurement i s  f o r  the purpose of gaining information, the  
appl icat ions of these techniques are examined with respect t o  information 
categories .  
se lec t ion ,  measure se lec t ion  and measure val idi ty .  

With the  hope 

Some of the problems concerning th i s  discussion are simulator 

MFASUREMENT CRITFRIA IN 

MAN MACIIINE SYSTFhlS SIMULATION 

By R .  W. Obermayer 

SuMMmY 

This report  describes simulation, models and games as analogies. They 
We resemble i n  some way something else about which information i s  desired.  

may therefore  measure ---- -_ an analogy instead of t he  real-world object ,  
dimensions of analogies are the  l e v e l ' o f  abstraction and the f i d e l i t y  of 
simulation, however, i f  the  object  i s  t o  measure, t he  most c r i t i c a l  aspect 
i s  t h e  v a l i d i t y  of measurement. Unfortunately, v a l i d i t y  i s  not always a 
p r a c t i c a l  concept. Since the  objective of'measurement i s  t o  derive infor -  
mation, simulation s tudiesAare  analyzed with respect t o  informatio 
i n  the  attempt t o  derive c r i t e r i a  f o r  measure select ion.  

C r i t i c a l  

INTRODUCTION 

The a b i l i t y  t o  measure i s  frequently used as a gauge of the  maturity of 
This i s  a reasonable gauge s ince upon re f lec t ion  it s c i e n t i f i c  d i sc ip l ines .  

w i l l  be seen t h a t  what we understand through research depends upon measure- 
ment, and what we can predic t  i n  the  design of systems a l so  depends upon what 
we have measured. Consequently, it i s  v i r tua l ly  impossible t o  overestima+e 
the  importance of measurement. 
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THEORY 

Definition 

A var i e ty  of def in i t ions  of games, models and simulation e x i s t  i n  t he  
man-machine systems l i t e r a t u r e .  Abt (1964) distinguished between games, 
models and simulations as follows: 
t o  rules and decided by s k i l l ,  s t rength,  o r  apparent luck. A model i s  a 
representative -- ac tua l  o r  theore t ica l  -- of the  s t ruc ture  o r  dynamics of 
a thing o r  process. A simulation i s  an operating imitat ion of a r e a l  
process." It i s  immediately recognized tha t  he does not consider these as 
mutually exclusive categories.  
be met i n  c l a r i fy ing  and extending these def in i t ions ,  the  problem i s  
compounded s ince there  i s  l i t t l e  consistency i n  the  l i t e r a t u r e .  
(1960) defines: 
stochastic model of a r e a l  s i t ua t ion ,  and then performing sampling experiments 
upon the  model." 
of several  forms of appl icat ions of Monte Carlo techniques." 
t o  system engineering, Goode and Macho1 (1957) state: "...we s h a l l  here 
define simulation t o  be the  study of a system by the  cut-and-dry examination 
of i t s  mathematical representation by means of a large-scale computer. 
Without proceeding fur ther  it is  c l e a r  tha t  various d isc ip l ines  using 
similar techniques apply somewhat d i f f e ren t  terminology. 

"A game i s  any contest  played according 

While no s m a l l  amount of d i f f i c u l t y  would 

Flagle 
"By simulation i s  meant the  technique of s e t t i n g  up a 

"With t h i s  def in i t ion ,  simulation may be regarded as one 
With regard 

One other  attempt a t  def in i t ion  w i l l  be helpful.  Chapanis (1961) 
proposes the  following: "Models are analogies. Sc i en t i f i c  o r  engineering 
models are representations,  o r  l ikenesses ,  of ce r t a in  aspects of complex 
events, s t ruc tures ,  o r  systems, made by using symbols o r  objects  which i n  
some way resemble the  thing being modeled." This def in i t ion  goes t o  the  
heart  of the  matter and w i l l  be bas i ca l ly  the  de f in i t i on  used here. Here 
w e  sha l l  say t h a t  games, models and simulations a re  analogies, and s h a l l  
not attempt t o  dis t inguish between them. Abt's de f in i t i on  i s  ind ica t ive  
of t h e  differences i n  t h e  approaches t h a t  one might adopt, but more may be 
gained by pointing up the  basic  sameness than by perseverating on the  
assignment of labe ls .  
the  terms, game, model o r  simulation, w i l l  be used interchangeably but  
w i t h  some attempt t o  be consis tent  with a spec i f ic  l i t e r a t u r e .  

In  view of t he  ex is t ing  confusion of terminology, 

There are a wide var ie ty  of reasons f o r  manufacturing analogies of the 
real world, but one of the most important i s  t o  c rea t e  an environment 
which permits measurement. 
not requiring formal measurement, such as the  t r a in ing  of complex s k i l l s ,  
but generally even w i t h  these there  e x i s t s  a t  least a secondary requirement 
f o r  measurement (e.@;. proficiency measurement). This paper w i l l  only 
consider simulations, models and games construed f o r  t he  purpose of pro- 
ducing information through some l e v e l  of measurement -- i n  shor t ,  any 
sc i en t i f i c  analogy which permits measurement. 

There a re  of course important uses of simulators 



Levels of Abstraction 

In  constructing an analogue of a r e a l  world s i t u a t i o n  one may choose 
from a spectrum of symbolic representations.  
spectrum i s  given by Haythorn (1962), shown i n  Figure 1. The r e a l  world i s  
depicted a t  one end of the  spectrum and t h e  mathematical model a t  the other  
end. In  between a re  analogues of d i f f e ren t  leve ls  of abstract ion.  As the  
corresponding models generally develop, as  one proceeds from bottom t o  top 
i n  the  f igure ,  the models increase i n  abstraction, symbolization and general i ty;  
and commonly the models decrease i n  v a l i d i t y  and i n  the  amount of real-world 
d e t a i l  represented. However, it i s  important t o  note t h a t  the  degree o r  
l e v e l  of abstract ion i s  a unique property of the  analogy and is  separate 
from such matters as the amount of real-world d e t a i l  (which w i l l  be ca l led  
"Fide l i ty  of Simulation" below). 
corresponding t o  the  l e v e l  of abstract ion a t  the bottom of the  f igure  
involve co l lec t ion  of basic  data ,  while at the top  the  techniques 
involve synthesis of basic  data.  
g rea t ly  on avai lable  knowledge of the  phenomena t o  be studied. 
able  knowledge i s  scanty, t he  analog should bear the c loses t  possible  
resemblance t o t h e  r e a l  world; i f  avai lable  knowledge of the phenomena i s  
complete, measurement merges i n t o  calculat ion through a mathematical model. 

One descr ipt ion of t h i s  

It may also be noted t h a t  techniques 

Therefore, the choice of andog depends 
If the  ava i l -  

A fundamental problem i s  t h a t  the r e a l  world is only displayed through 
observation and measurement. As a r e s u l t ,  the analogies which we construct 
a r e  based on these imperfect descriptions.  
measurement based on an analogy i s  t h a t  the  r ea l  world s i t u a t i o n  i n  question 
does not yet  ex i s t .  
always be suspected. 

Further, a common reason f o r  

Consequently, generalizations based on analogy must 

F i d e l i t y  of Simulation 

A t  any given l e v e l  of abstract ion an analogy of the r e a l  world may 
represent only a selected subset of the  r e a l  world d e t a i l ,  and t h a t  d e t a i l  
may be included with varying degrees of precision. For example, a f l i g h t  
simulator may include only the s t a t i c  response cha rac t e r i s t i c s  (airspeed, 
a l t i t u d e ,  e tc . )  o r  it may include the  fu l l  dynamic Charac te r i s t ics  
( o s c i l l a t o r y  t r ans i en t s  occurring i n  t h e  change from one state t o  another). 
The cha rac t e r i s t i c  of comprehensiveness and precision of simulation i s  
re fer red  t o  as the f i d e l i t y  of simulation. 

'It may be questioned whether a computer output, on a completely programmed 
bas is ,  may cons t i t u t e  measurement. 
Stevens (1951): "In i t s  broadest sense measurement i s  the  assignment of 
numerals t o  objec ts  o r  events according t o  rules." 

It does If one applies the  de f in i t i on  of 

3 
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The question of f i d e l i t y  of simulation also poses a dilemma. One is  
ord inar i ly  more confident of h i s  r e su l t s  with high f i d e l i t y  of simulation, 
but frequently simulation i s  of grea tes t  value when real-world aspects are 
missing, forcing low-fidel i ty  of simulation. For example, many problems 
are studied w i t h  simulators because hazardous real-world a t t r i b u t e s  a re  
deleted. Additionally, high f i d e l i t y  simulation may be extremely expensive. 

When the  object  of the  simulation i s  t o  measure, one approach t o  t h i s  
dilemma i s  t o  use the minimum of real-world d e t a i l  t o  produce va l id  measure- 
ment. If the measurements on the  analogue cor re la te  with real-world 
measurements, high f i d e l i t y  i s  an unnecessary, perhaps undesirable, 
complexity. The corresponding problem of f i d e l i t y  of f l i g h t  simulation f o r  
t r a in ing  has been extensively analyzed by Muckler, e t  al. (1959). The 
c r i t e r i o n  i n  t h i s  case i s  the  pos i t ive  t ransfer  of t r a in ing  t o  the ultimate 
f l i g h t  vehicle. Muckler gives evidence t h a t  sometimes simple t r a i n e r s  of 
procedures are adequate, whereas a t  other times, aspects of the f l i g h t  
dynamics which may be judged as "small" are  required t o  cause pos i t ive  
t r ans fe r  of t ra in ing .  
dynamics, but  with a poor approximation, may cause negative t ransfer .  
study by Brown, e t  al .  (1958) of the  centrifuge as a f l i g h t  simulator it 
w a s  concluded: 
experiment, the  results of work with a s t a t i c ,  o r  fixed-base, simulator pro- 
vided just as good a basis  f o r  predict ion of the  way i n  which p i l o t s  would 
perform a spec i f ic  task  i n  the  a i r c r a f t  as  did work performed on the  cen t r i -  
fuge." 
gondola might have e l i c i t e d  negative e f fec ts .  

Indeed, t he  increase of f i d e l i t y  by addi t ional  f l ight  
In  a 

"For the simple tracking tasks employed i n  the present 

In  f a c t  there  was some suspicion tha t  anomalous ro ta t ions  of the 

The problem i s  more complex than the  d- i f f icul t  one of deciding on the  
proper amount of real-world d e t a i l  t o  be  incorporated i n  the  analogy t o  
produce va l id  measurement. 
d i s to r t ions  i n t o  the  model t o  derive va l id  measurement. 
s t r a t e d  through an example: 
depend upon the  square and the  cube of  i t s  dimensions, respectively.  
the  aerodynamic propert ies  of the  model depend on area and volume, a scale  
model -- one t h a t  looks j u s t  l i k e  the  r e a l  a i r c r a f t  -- w i l l  produce 
erroneous wind-tunnel data ,  while a distorted-appearing model w i l l  produce 
va l id  measurement. 
he requires  h i s  analogies t o  "look" l i k e  real world objects .  

It may be necessary t o  include de l ibera te  
This may be demon- 

Since 
The areas and volume of an a i r c r a f t  model 

It may be seen tha t  one must be carefu l  i n  which aspects 

The question of f i d e l i t y  of simulation i s  complex, requiring separate 
study i n  each spec i f i c  case. 
of an understanding of the  phenomena simulated, i t  w i l l  be d i f f i c u l t  t o  
answer basic questions of f i d e l i t y  of simulation. 

If one must simulate as a short-cut i n  l i e u  

5 



Me as urement Validity 

When one simulates t o  gain information through measurement, the  success 
of the endeavor ul t imately depends on measure va l id i ty .  
however t h a t  t h i s  i s  a somewhat c i r c u l a r  statement. 
measures mean what they a re  supposed to;  i n  t h i s  vein, va l id  measurement i s  
synonymous w i t h  successful simulation. 

It w i l l  be seen 
Crudely put ,  va l id  

To be more precise  the  following def in i t ions  of measure v a l i d i t y  were 
recast  from those ex is t ing  i n  the  l i t e r a t u r e  ( c f .  McCoy, 1963; Smode e t  al . ,  
1962; APA Committee on Test Standard, 1954). 

1. Predictive va l id i ty .  The degree t o  which a measure derived from 
simulation cor re la tes  w i t h  the same measurement taken i n  the 
real-world environment. 

2. Concurrent va l id i ty .  The degree of agreement between two d i f f e ren t  
measures simultaneously taken i n  the  same environment. 

3. Content va l id i ty .  The degree t o  which a measurement taken i n  the  
simulated environment incorporates all fac tors  necessary t o  pred ic t  
conditions of the  r e a l  world. 

4. Construct va l id i ty .  The degree of cor re la t ion  between a given 
measure and some construct ,  i . e .  t h a t  ce r t a in  explanatory constructs  
account f o r  measurement values. 

These def in i t ions  can perhaps be made c l ea re r  through reference t o  

In  the  f igure ,  the  degree of 
Figure 2. 
repeated measurements of two measures. 
predict ive v a l i d i t y  involves a comparison of measure A (from the  analogy) 
against  measure C (from the real world). 
by a comparison of measure A and measure B, both derived from measurement 
on the  analogy. Content v a l i d i t y  i s  indicat ive of comprehensiveness of 

condition o r  event. 
ba t te ry  of measures, and may be judged by the  a b i l i t y  t o  pred ic t  a condition 
such as mission success which may depend on measures of response, 
r e l i a b i l i t y ,  acceptabi l i ty ,  e tc .  (measures A, A ' ,  A", ... compared t o  
measure E) . 
and concept. 
Of operator workload, however, there  i s  i n  general no measure D. 
sense tha t  the  v a l i d i t y  i s  measured i n  terms of the  cor re la t ion  of two 
columns of numbers, i t  may be seen t h a t  only predict ive and concurrent 
v a l i d i t i e s  can be quantified,  and t h a t  content and construct  v a l i d i t y  a re  
largely subjective terms. 

Validity i s  normally measured i n  terms of t he  cor re la t ion  between 

Concurrent v a l i d i t y  i s  determined 

measurement, and i s  measured by t h e  a b i l i t y  t o  pred ic t  some real world 1 
Content v a l i d i t y  i s  therefore  commonly based on a 

Construct v a l i d i t y  involves the  agreement between measurement 
In the f igure ,  measure A may be expected t o  be an indicat ion 

In the  

. 
6 
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Ordinarily, predict ive v a l i d i t y  i s  sought i n  simulation, w i t h  the  good- 
ness o f  simulation judged by the  degree of correspondence of measures taken 
i n  the simulated and r e a l  worlds. Concurrent v a l i d i t y  i s  of i n t e r e s t  when 
subst i tut ing one measure f o r  another. 
assuring tha t  measures pred ic t  abs t rac t  c r i t e r i a .  
sought f o r  val idat ing theories ,  which may be va l id  independently of any 
agreement between simulated and r e a l  worlds. 

Content v a l i d i t y  i s  of importance fo r  
Construct v a l i d i t y  i s  

I t  has already been pointed out t h a t  predict ive v a l i d i t y  i s  most 
commonly sought f o r  va l ida t ing  simulation, however, t h i s  i s  not necessar i ly  
the  best choice. Due t o  grea te r  control ,  measurement i n  the simulated 
environment may be more r e l i a b l e  and therefore  not wel l  correlated with 
unreliable real-world measurement. Content v a l i d i t y  may be frequently the  
only important factor ;  i f  goal achievement can be predicted,  it does not 
matter i f  the measure cor re la tes  i n  the  r e a l w o r l d  o r  i s  even measureable 
i n  the r e a l  world. A theory demonstrating high construct v a l i d i t y  can be 
of great importance (although perhaps l e s s  useful)  i f  it lacks r e l a t i n g  
measures of high predict ive va l id i ty .  Even where predict ive v a l i d i t y  i s  
sought, f o r  example, when comparing two a i r c r a f t  subsystems i n  the f l i g h t  
simulator, one may be content with va l id  ranking of measures, ra ther  than 
perfect agreement between simulated and r ea lwor lds .  

Unfortunately simulation, models and games a re  not of ten validated.  
In 8 great many cases there i s  no a l t e rna t ive  t o  the use of simulators, 
models o r  games. 
of problems and are used even though t h e i r  r e a l  value i s  not accurately 
known. The danger involved i s  obvious; without val idat ion,  measurement 
may be the  co l lec t ion  of worthless numbers. 

They afford the  only avai lable  approach t o  ce r t a in  kinds 

Further, there  i s  the  danger of overgeneralizing from models. The 
models a r e  analogies and cannot be completely accurate.  Models, as opposed 
t o  theories,  do not attembt t o  describe the  thing t h a t  they represent.  
Chapanis (1961) puts it, "Models, i n  a word, are judged by c r i t e r i a  of 
usefulness; theories ,  by c r i t e r i a  of t ruthfulness .  I' 

fa l lacy  of regarding the premise t,o be t rue  i f  the  conclusion i s  t rue ,  
the  predictive v a l i d i t y  of a model does not imply t h a t  the  real world i s  
l i k e  the model. 

A s  

Similar t o  the  log ica l  

APPLICATIONS 

In b r i e f ,  t he  previous discussion expands on the  theme t h a t  simulators, 

The se lec t ion  of measures i s  a d i f f i c u l t  topic  i n  i t s e l f ,  
models and games should be designed t o  generate va l id  measurement. 
what measurement? 
but the success of simulation, modeling and gaming i s  d i r e c t l y  dependent 
upon it. 
the following, a number of exemplary s tudies  a r e  analyzed with respect t o  
measures selected and information derived. 

But 

In the attempt t o  expl ica te  the  problems of measure se lec t ion ,  i n  

8 



Simulation for Information 

, Clearly the objective of simulation as a measurement tool is to collect 
' information. 
1 between various simulation studies in terms of the particular information 
I objectives. In the following, a number of simulation studies are cited and 
1 discussed. The majority of these studies were performed in the support of 

system design, development and test. For these studies the types of 
information sought at various times during the system development cycle 
serves as a framework for classification. Apart from the requirements of the 
system development cycle, simulation serves well as a method of research, 
and two research studies are discussed without further classification. 

Simulation in Support of System Design 

It may be reasonable therefore to attempt to distinguish 

: 
Six basic types of simulation studies may be identified in terms of the 

information provided during the system design cycle: 
design simulation techniques may provide initial feasibility demonstrations, 
(2 )  in the early design stage, system models serve as an analytic technique, 
(3) simulation allows the detailed comparison of specific subsystems, (4) 
simulation provides a method for the collection of system design data and 
user criticism, acceptance and design advice, (5) simulation allows system 
test, and sometimes (6) total system performance evaluation. Each type of 
simulation study incorporates different methodology and different measurement 
requirements. 

(1) early in system 

Feasibility demonstrations. Pilot participation in the control of large 
space boosters has been considered a potentially important role, but due to 
the stringent requirements of the task, a role requiring proof of its 
feasibility. 
Muckler, Hookway and Burke (1962) studied the insertion of pilot control 
into a simulated booster in (a) the booster flight control loop, with and 
without the benefits of autopilot rate damping, and (b) the guidance loop, 
where the pilot attempted steering control by applying torque to the 
attitude gyros. The study was composed of two principal parts: 
analysis of total flight control loop stability using a mathematical model 
to approximate the pilot, and (b) an empirical evaluation in which several 
pilots flew the simulated booster at various flight conditions. The test 
method was to adjust the simulation to represent a specific point on the 
boost trajectory and to apply a disturbance. 

To explore the feasibility of pilot control during boost, 

(a) an 

The purpose of the study was to establish initial boundaries for 
pilot booster control, to exclude the most obviously unsatisfactory con- 
ditions from further consideration, and to recommend the most promising 
control modes for most stringent tests. The measurement emphasis, 
therefore, was on measures of stable performance and maintenance of safe 

9 



vehicle tolerances. Measurement included, f o r  example, m a x i m u m  vehicle body 
r a t e s ,  vehicle a t t i t u d e  e r ro r ,  measures f o r  checking the  mathematical model, 
and p i l o t  performance on secondary tasks. 

Based on these measurements, a number of conclusions were reached about 
the  adequacy of p i l o t  control .  
inadequate without s t a b i l i t y  augmentation, and performance was a function of 
p i l o t  loading and the p i l o t ' s  posi t ion i n  the  control  loop. The mathematical 
model, although qui te  simple, was found t o  predict  s t a b i l i t y  o r  i n s t a b i l i t y .  

Stable  p i l o t  performance w a s  probably 

It may seem tha t  t h i s  study provided excel lent  preliminary information 
f o r  t h e  design of large space boosters,  although c l ea r ly  fu r the r  design 
would require much more de ta i led  analysis .  It may be noted tha t  t h i s  study 
wisely checked by d i r ec t  empirical t e s t  any predictions of  the  simple 
mathematical model; conceivably, a f t e r  su f f i c i en t  empirical tests,  the  
mathematical model of the human p i l o t  may serve t o  expedite such f e a s i b i l i t y  
tests. 

Analytic system models. One of the  more prominent signs of the  impact 
of the modern high-speed d i g i t a l  computer on man-machine methodology i s  a 
technique ca l led  computer simulation. Computer simulation cons is t s  of 
constructing a mathematical model of each system element (which need not be 
a concise mathematical statement, but  may consis t  of tab les  of values, if... 
then statement, probabi l i ty  d i s t r ibu t ions ,  e t c . ) ,  and including a l l  known 
interact ions.  The computer i s  then programmed t o  perform the indicated 
mathematical a c t i v i t i e s .  The computer can repeat the  a c t i v i t y  many times 
under varying circumstances, observe i t s e l f ,  and produce a pr inted summary. 
Through t h i s  technique the  complex system in te rac t ions  can be observed 
while s a l i e n t  system propert ies  are changed. The technique i s  of course 
d i r e c t l y  dependent upon the  accuracy of the  mathematical model, however, it 
i s  mainly the  model form which i s  c r i t i c a l  (uncertain parameters a r e  l e s s  of 
a problem since they may be varied t o  observe system s e n s i t i v i t y  t o  a range 
of values). 

1 
Siege1 and Wolf (1963) describe a technique designed t o  determine 

whether a two-man team can be expected t o  complete a l l  act ions required 
f o r  a given time-dependent task  within t i m e  l i m i t s .  Through t h i s  technique 
the  designer can determine task  o r  system probabi l i ty  of success, operator 
loading, the  d i s t r ibu t ion  of f a i l u r e s ,  and the  e f f ic iency  of the team work- 
load divis ion.  O f  course the model demands highly spec i f ic  subtask da ta ,  
such as:  average subtask execution time, and the  corresponding d i s t r ibu t ion ,  
subtask probabi l i ty  of success and p r i o r i t y ,  sequencing of operation with 
necessary waiting and id l ing  data ,  requirements f o r  communication, e t c .  In  
b r i e f ,  highly spec i f ic  task  a c t i v i t y  information i s  required. Fortunately, 
these data  l a rge ly  ex i s t  o r  may be readi ly  measured. 

10 
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The basic logic  of t h i s  technique has been adapted t o  four  tasks: 
c a r r i e r  landing, i n f l i g h t  missi le  launching, i n - f l i gh t  refuel ing,  and in - f l i gh t  
intercept .  With regard t o t h e  success which one might expect, Siege1 and 
Wolf comment: "For a l l  four  tasks  reasonable concordance was found between 
the  predict ions from the model and outside c r i t e r i a  of success on the  task 
involved." 
reasonable predict ive eff ic iency may be anticipated f o r  the  model," 

" A t  present it appears t h a t  f o r  systems similar t o  those tes ted ,  

In  the u t i l i z a t i o n  of ana ly t ica l  stochastic models t o  inves t iga te  
a l t e rna t ive  system configurations,  it i s  possible -- indeed c r i t i c a l l y  
necessary -- t o  adapt a thorough experimental design ( c f . ,  Ruby e t  al . ,  1963). 
In  a study of a l t e rna t ive  ways of organizing a l o g i s t i c s  support; system, 
Haythorn (1962) used a design control l ing for :  2 management s t ruc tures ,  2 
weapons systems, 4 s t r e s s  conditions,  64 par t s  and 9 bases. 
was a complete f a c t o r i a l  with the l a t t e r  three var iables  fu r the r  defined by 
Greco-Latin arrangements. Operation of the  system occurred within the  
computer managed by Air Force l o g i s t i c s  experts who par t ic ipa ted  as subjects 
i n  the  experiment. 
performance of the system, made management decisions, and implemented the 
decisions by communicating t o  the computer model. Data co l lec t ion  and 
analysis  were programmed on the  computer allowing completion of an analysis 
of variance every simulated week of the study. The primary measure of 
performance was the  occurrence of stock-outs, o r  demands f o r  spare pa r t s  
not avai lable  a t  t he  base. 

The t o t a l  design 

The A i r  Force personnel received information regarding the 

The computer simulation technique normally includes simulation of 
probabal is t ic  fac tors .  Therefore whether real o r  simulated human elements 
are present t o  contr ibute  t o  chance occurrences, experimental control  i s  
required t o  assure s t a t i s t i c a l l y  s ign i f icant  resu l t s .  
"...even i n  systems as complex as Air Force l o g i s t i c s  systems, it i s  
possible  t o  construct experimental designs that  control  stimulus var iables  
and t h a t  silch designs increase the  p red ic t ab i l i t y  of one 's  resul ts . ' '  

A s  Haythorn remarks, 

Subsys5em comparisons. A problem which frequently occurs i n  system 
development involves the  need t o  make choices among avai lable  hardware items 
based on complex decision-making c r i t e r i a .  This i s  perhaps the  most common 
simulator appl icat ion and consequently incorporates the most highly 
developed methodology. 

The pr inc ipa l  problem i n  using the  simulator f o r  subsystem comparisons 
i s  t o  assure t e s t  over the  f u l l  useful range o f  the  hardware with va l id  
procedures, carefu l  experimental control  and adequate measurement of both 
subsystem and system performance. 

11 
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An example of the methodology i s  provided by Gainer and Brown (1961). 
Highly experienced t e s t  p i l o t s  flew a f l i g h t  simulator over a standardized 
mission p r o f i l e  using, i n  succession, th ree  d i f f e ren t  a l t imeters  (with 
s ta t i s t i . ca1  control  f o r  order of presentat ion) .  The goal of the study was 
t o  evaluate the  three a l t imeters .  The following maneuvers were flown i n  
continuous sequence: (a )  take-off and climb t o  40,000 f e e t ,  ( b )  1800 t u rn  
t o  l e f t ,  ( c )  1800 tu rn  t o  r i g h t ,  (d)  s t r a i g h t  and l e v e l  hold, ( e )  descent 
t o  20,000 f e e t ,  ( f )  climb t o  27,000 f e e t ,  (g)  descent t o  4,000 f e e t ,  (h )  
s t r a igh t  and l eve l  hold, ( i) climb t o  18,000 f e e t ,  ( j )  1800 tu rn  t o  r i g h t ,  
(k )  1800 turn t o  l e f t ,  (1) je t  penetrat ion and ( m )  low approach. During 
each maneuver, one-minute scoring periods were taken f o r  heading, a l t i t u d e ,  
mach, ve r t i ca l  r a t e ,  and airspeed, where the  pa r t i cu la r  measure w a s  
appropriate. Three kinds of measures were obtained: system performance 
measures, p i l o t  preference measures, and reading e r ro r s ,  i . e . ,  indicat ions 
of expected system performance, user  acceptance, and subsystem performance. 

I n  cont ras t  t o  the  requirements f o r  f e a s i b i l i t y  demonstrations and 
parametric analyses, spec i f ic  hardware comparisons a re  usual ly  conducted 
t o  make a firm and f i n a l  decis ion.  O f  course the  f i n a l  decision must 
depend, i n  addi t ion t o  the simulator data, on considerations of weight, 
space, cos t ,  r e l i a b i l i t y ,  maintainabi l i ty ,  sa fe ty ,  e t c .  

It may a l so  be apparent t h a t  the r e su l t s  may d i f f e r  from the  study 
c i t e d  if  d i f f e ren t  procedures were followed. Much depends on the manner 
which the simulation hardware i s  used, and thus no f l i g h t  simulator per  se 
can be validated; measurement v a l i d i t y  depends upon the  e n t i r e  methodology. 

Design advice and user  acceptance. Many systems a r e  designed t o  be 
used by people who a re  i n t e l l i g e n t ,  s k i l l e d ,  experienced, and i n  posi t ions 
of authori ty  and with the respons ib i l i ty  of accepting o r  r e j ec t ing  the  
f i n a l  system -- and i n  some cases,  p a r t i a l l y  capable of designing the 
system. 
suf f ic ien t ly  low abstract ion e x i s t s ,  the  system designers may wish t o  
co l lec t  spec i f ic  comments and opinions from the prospective users  based 
on simulated experience. 
based on t h e  most appropriate subject  population, and he may avoid some 
problems due t o  user  re jec t ion  which may not otherwise be apparent p r i o r  
t o  f i n a l  acceptance t e s t ing .  

During system design and development, when a simulator of 

In  t h i s  way he may c o l l e c t  valuable design advice 

! 

User opinion data  has been a t r a d i t i o n  i n  a i r c r a f t  development; 
Belsley (1963) considers t h i s  type measurement t o  be c r i t i c a l  f o r  a l l  l eve l s  
of f l i g h t  simulator t e s t ing .  In p a r t ,  these da t a  cons is t  of unprompted 
opinions and questionnaire r ep l i e s ;  i n  p a r t  these data cons is t  of concerted 
attempts t o  co r re l a t e  p i l o t  opinions with aerodynamic parameters. A body 
of data ca l l ed  handling q u a l i t i e s  requirements cons i s t s  of systematic 
col lect ion of p i l o t  opinion (quant i f ied  on a ten-point sca le )  as a function 
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of period and damping cha rac t e r i s t i c s  f o r  longitudinal ( s h o r t  period and 
phugoid) and l a t e r a l  dynamics. 
graph of period vs damping, and use t h i s  information t o  determine i f  a given 
design w i l l  m e e t y i t h  p i l o t  acceptance, i .e . ,  have sa t i s f ac to ry  handling 
qua l i t i e s .  

One can t h e n  p lo t  opinion contours on a 

Whereas most measurement would be appropriate f o r  simulation a t  any 
point of the  spectrum of abstract ion,  it is  c l ea r  t h a t  information from the  
user  can only be col lected for low-abstraction simulation, i .e . ,  close t o  
the  real world i n  regard t o  the  use r ' s  task. 

System t e s t .  Final system performance evaluation should na tura l ly  be 
conducted with the ful l  r e a l  system. However, i n  a grea t  many cases the 
t e s t s  performed with the  simulated system cons t i tu te ,  f o r  a l l  p rac t i ca l  
purposes, the  f i n a l  system t e s t .  
(e .g . ,  may require a l l -ou t  w a r ) ,  and i n  other cases the  cost  of system 
f a i l u r e  i s  so grea t  t h a t  i t  simply cannot be permitted t o  remain undiscovered 
u n t i l  a t e s t ab le  system i s  avai lable .  

In  some cases the system cannot be t e s t ed  

Some excel lent  examples are provided by Chambers (1963) with regard t o  
the  Aviation Medical Acceleration Laboratory (&MAL) centr i fuge t e s t s  of the  
X - 1 5 ,  Mercury, Dyna-Soar and Apollo vehicles (and f o r  examples and discussion 
of ground systems evaluation, see Davis and Behan, 1962). 
cha rac t e r i s t i c s  of system tes t  a re  high-f idel i ty ,  low-abstraction simulation 
with profuse measurement. A t  AMAL, f o r  example, the  measurement equipment 
consisted of multichannel recorders, magnetic tape recorders,  closed loop 
TV, and extensive analog and d i g i t a l  computer da ta  reduction equipment. 
With the  system being f r e e l y  exercised i n  system t e s t ,  experimental control  
i s  a t  a minimum, and one must be prepared t o  record and analyze achievement 
of goals and subgoals, system and a l l  subsystem behavior -- v i r t u a l l y  any 
contingency. 
of simulation -- since the  simulation usually approximates the  real world 
as c lose ly  as possible  -- but  of providing su f f i c i en t ly  a broad spectrum 
of measurement. 

The primary 

The problems then are  not usually those of defining the  mode 

Simulation f o r  Research 

Use of simulation i s  of course not l imited t o  support of system 
development. 
research e f f o r t s  due t o  the inherent poss ib i l i t y  f o r  control  and measure- 
ment. System research i s  extensively r ich  i n  complexity, consequently no 
attempt w i l l  be made t o  i l l u s t r a t e  i t s  nature f u l l y .  
w i l l  be given: 
d i f f e ren t  topics .  

A s  a matter of f a c t  it i s  probably more appropriate t o  system 

Only two examples 
both are research of human behavior concerning widely 



Models f o r  human t racking behavior. A s  several  of the  previous 
examples document, the f l i g h t  simulator provides a control  task  f o r  the 
human operator, w i t h  the  simulator providing s t i m u l i  t o  the operator and 
responding i n  a closed-loop fashion t o  the operator 's  responses. 
continuous tracking behavior of t h e  human operator i s  complex and has so 
far  defied descr ipt ion i n  conprehensive terms. 

The 

While some models e x i s t  which w i l l  approximate the  gross aspects of 
human operator response, a study by Adams and Webber (1963) attempts t o  
derive a model whose output w i l l  match spec i f ic  features  of the operator 's  
output. Using analog computer techniques t o  simulate a generalized control  
system, data were col lected upon which a digital-computer-produced model 
was based. 

The model attempts t o  reproduce s tochast ic  fea tures  of human t racking 
behavior u t i l i z i n g  the notion of an e r r o r  peak; tracking e r ro r  r i s e s  t c  a 
point  where it i s  sensed by the  human operator and then i s  reduced by the 
operator t o  h i s  c r i t e r i o n  of excellence; fu r the r  system disturbances cause 
t h i s  cycle t o  repeat. The da ta  of four groups of 1 2  subjects  were used t o  
compute d is t r ibu t ions  re la ted  t o  tracking e r ro r  peaks and t o  pred ic t  tracking 
t i m e  h i s to r i e s  f o r  four  groups of 12 hypothetical  subjects.  Encouraging 
agreement w a s  found between the  data  of the hypothetical  and r e a l  subjects .  

The measures recorded consisted of data f o r  model computation and 
measures of model success. The spec i f ic  measures were: sampled d i g i t a l  
tracking errors, time-on-target scores,  frequency d is t r ibu t ions  of e r r o r  
peak values, mean number of peaks, and frequency d i s t r ibu t ion  of t i m e  
in te rva ls  between peaks. 
s e t  of measures i s  probably typ ica l  of no other  simulation study. 

In  passing, it may be noted t h a t  t h i s  pa r t i cu la r  

Business gaminq. An example of gaming which provides a foundation 
f o r  research i s  given by Kennedy's (1962) account of Project  SOBIG a t  
Princeton University. 
42 three-man teams were studied under various conditions of inter-team 
competition and intra-team cooperation. The teams acted as the  investment 
committee of banks. Within the  environment of a four-stock-and-bond 
"supply-and-demand" market, 10-13 years of stock market operation were 
played out i n  a period of three months. The objective of each team w a s  
t o  make as much money as possible.  The team members were provided with 
the  task of processing a continuous stream of information as wel l  as 
planning requirements f o r  long-range decisions.  
teams, several  model teams (unmanned) w i t h  f ixed programs were inser ted  i n t o  
the  competition against  the manned teams. 

In a business game model based upon t h e  stock exchange, 

In  addition t o  the  subject  

In  general, the  measurements consis ted of the t ransact ions and 
accumulated gains of each team, with comparisons made across teams and i n  
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par t i cu la r  against  the  model teams with fixed, control led s t r a t eg ie s .  
results gave some new ins ights  i n to  long-term planning behavior. 
surpr is ing f inding w a s  t h a t  the  long-term planning employed by the subject-  
teams w a s  generally i n f e r i o r  t o  the s t ra tegy  o f  making no t ransact ions a t  a l l .  

The 
The 

DISCUSSION 

Selection of Simulation Device 

With j u s t  the  sampling of the l i t e r a t u r e  viewed i n  the  previous 
sect ions,  it should be apparent t h a t  there  i s  an extreme var ie ty  of simu- 
l a t i o n  devices used i n  pract ice .  In  the  area of f l i g h t  simulation alone, 
devices range from simple photo mockups and control system mockups t o  fu l l  
dynamic simulation with s i x  degrees of  freedom. It i s  in t e re s t ing  t o  
speculate as t o  a choice of simulation i f  one i s  faced with the  problem of 
measuring pilot-aerospacecraft  performance. The range of possible choices 
a re  i l l u s t r a t e d  i n  Figure 3. 
two dimensions: The re la t ions  observed i n  the r e a l  world environment may 
be abstracted i n t o  other symbolic terms, and, t he  re la t ions  observed i n  the 
real world may be s implif ied o r  ignored, i . e . ,  decrease f i d e l i t y .  
example, f i d e l i t y  may be nearly maintained, but with a la rge  change i n  the  
degree of abstractness ,  by representing the  full aerodynamic complexity i n  
the  form of extensive and complicated equations. 
may be maintained a t  a r e l a t i v e l y  low l e v e l ,  but  with a great  reduction i n  
f i d e l i t y ,  by using a small, l i g h t  plane. Other possible simulator choices 
range from simple photo-mockups t o  highly complex centrifuge-computer- 
cockpit-mockups. 

One may seek a choice of a s imula tor  along 

For 

The degree of abstractness  

There a re  ord inar i ly  a number of p rac t i ca l  considerations i n  choosing 
The inves t iga tor  normally wants a measurement environment he a simulator. 

can control ,  convenience and economy. 

Thus the re  are many p rac t i ca l  considerations which, of course, cannot 
A s  a matter of f a c t  it would appear t h a t  these considerations be ignored. 

have had a dominating influence on simulator select ion.  
decision should not be made so le ly  on these bases, s ince the main item i s  
the measurement objective of the simulation. 

However, the  

Here we are assuming t h a t  one simulates i n  order t o  measure. The f irst  
consideration should be therefore the  va l id i ty  of t he  measures derived 
through simulation. Collection of inva l id  data i s  a waste of  time. 

It  may be seen t h a t  there  i s  no d i r e c t  re la t ion  between v a l i d i t y  and 
f ide l i ty /abs t rac t ion .  Whether the  a i r c r a f t  i s  measured o r  highly complex 
equations are measured, va l id  data  may resu l t .  
procedural s k i l l s  may be j u s t  as va l id  i n  the low-fidel i ty  photo-mockup 

Tests of the p i l o t ' s  
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as i n  the  high performance a i r c r a f t .  For tha t  matter, the  question i s  
r e l a t ive ,  f o r  i f  one wishes t o  predict  l i g h t  plane performance, t he  high- 
performance a i r c r a f t  would be considered a low-fidel i ty  representation and 
may y ie ld  inva l id  measurement. 

Therefore, no spec i f ic  guide can be given f o r  simulator se lec t ion  
except t o  underline the  requirement f o r  va l id  measurement. Parenthet ical ly ,  
it may be mentioned t h a t  even the  usual requirement f o r  experimental control  
may be a disadvantage. 
simulation complexity and cos t ,  a d i s t i n c t  advantage of f i e l d  t e s t  i s  the  
po ten t i a l  f o r  measurement of events which would be suppressed by the  usual 
experimental controls .  

While one measures ir ,  the  f i e l d  because of 

The Need f o r  Validation 

A s  defined here, simulation, models and games a re  analogies. They 
resemble i n  some way something e l s e  about which information i s  desired.  
must remember when w e  measure the  analogy tha t  the resemblence between 
analogy and the  real world object  can never be complete. 
erroneous measurement always e x i s t s  unless the v a l i d i t y  of the  analogy has 
been demonstrated. Unfortunately f e w  of our models have been validated,  
nor i s  the  s i t ua t ion  l i k e l y  t o  improve s ince we usually do not have the  time. 

We 

The po ten t i a l  f o r  

Moreover, t he  problem i s  not a l lev ia ted  by noble resolut ions since 
v a l i d i t y  i s  not always a very p rac t i ca l  concept. Frequently the r e a l  
world system being modeled does not ye t  ex is t ,  precluding any predict ive 
v a l i d i t y  checks. Frequently our a b i l i t y  t o  measure i s  not as good i n  the 
real world environment as it i s  i n  our simulations, so how do we va l ida te  
measures? 
achieving goals which a re  measureable only i n  re t rospect .  To continue, 
t o  va l ida te  may require more trouble than measuring i n  the  r e a l  world; t o  
ge t  t he  job done within t i m e  limits requires taking some chances. 

The v a l i d i t y  we seek may be w i t h  respect t o  the  success of 

On the  o ther  hand, when one does not val idate ,  he must have a great  deal  
Of f a i t h  i n  how own powers of analyt ic  and synthetic reasoning. 

Measure Select ion 

It i s  s t r i k i n g l y  apparent i n  scanning the simulation l i t e r a t u r e  that  
a wide va r i e ty  of measures a re  i n  use. The scope of information require- 
ments under the  rubrics  of simulation, models and games ce r t a in ly  i s  very 
broad, and the  s i t ua t ion  i s  not much b e t t e r  when t h e  topic  i s  narrowed t o  
j u s t  f l i g h t  simulators ( c f . ,  Obermayer and Muckler, 1963). 



Some general  statements may be made with regard t o  the  information 
categcry one wishes t o  measure ( s e e  Table 1). 
i t  i s  necessary t o  show t h a t  some simple tasks  can be accomplished and t h a t  
?-LO unsafe conditions r e su l t .  I n  ana ly t ic  e f f o r t s ,  one may vary system 
parameters (conduct an experiment) with the  primary measure being system 
perfornance. 
on the  subsystems d i r e c t l y  a f fec ted  and the  po ten t i a l ly  adverse e f f e c t s  on 
other  subsystems. Similar ly ,  with subsystems comparisons, system and 
subsystem performance, and frequent ly  user  acceptance are measured. System 
t e s t  depends pr imari ly  on the  measurement of acceptable system performance 
through object ive and user acceptance measurement, but one a l so  must 
provide f o r  malfunction data t o  f a c i l i t a t e  design improvements. If one i s  
in te res ted  i n  model building, there  i s  a need t o  provide da ta  f o r  computing 
o r  double-checking model parameters and the  comparison data t o  the  real 
world being represented. In general ,  i t  i s  believed t h a t  i f  the  measurement 
categories  shown i n  Table 1 can be delimited,  t he  spec i f ic  measurement 
requirements w i l l  be very apparent. 

To demonstrate f e a s i b i l i t y ,  

Moreover, it i s  a l s o  necessary t o  measure the  immediate e f f o r t s  

It would appear, then, t h a t  when one can s ta te  what it i s  t h a t  he wants 
t o  know, spec i f i c  measurement i s  implied. It might be expected therefore  
t h a t  some standardization would e x i s t  across similar s tud ies .  However, no 
such Standardization i s  readi ly  apparent, although a degree of s tandardizat ion 
would ce r t a in ly  f a c i l i t a t e  predict ion and measure se lec t ion ,  and, i n  t i m e ,  
wo:ild a l l e v i a t e  some concern about v a l i d i t y  of simulation. 

TABLE 1 

SELECTION OF-MEASUREMENT 

I NFORYATI ON CATEGORY 

F e a s i b i l i t y  

Anal ys i s  

Subsystems comparison 

System Test 

Model Uui lding 

MEASURE 

S t a b i l i t y ,  Safe Performance 

System Performance 
Subsystem Performance 
Acceptance 

System Performance 
Subsystem Performance 
Ac c ep t anc e 

System Performance 
Subsystem Performance 
Acceptance 

Real World Input-output 
Model Input-output 
Model parameters 



Quantification of Human Performance 

Part of the problem in design of measurement is that we do not understand 
the basic phenomena well enough to specify what we wish to know. 
other hand, with respect to human performance, this is at times precisely the 
reason for simulation. Without the advantage of observing the human 
operating in a simulated environment, insufficient human operator data 
inhibits prediction of system performance. One of the potential evils of 
simulation is that given some ability to predict system performance, the 
measurement of corresponding human behavior is forgotten. The next time 
the same problem arises, one must again simulate because of insufficient 
basic data. 
greatest potential for the quantification of human performance. 

On the 

On the other hand, simulation at the same time offers the 

It should be clear from the examples of simulation, modeling and gaming 
given earlier, that these techniques are applicable at every point of the 
system development cycle. Further, these techniques are used at various 
levels of abstraction by virtually every discipline which contributes to 
system development. 
refinement of techniques of all disciplines concerned with system effectiveness. 

There is much to be gained through the merging and 
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